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A one-pot strategy is devised and applied to the total syntheses of natural products with a THP-ring back-
bone. A special feature of this one-pot synthesis is the recyclability of the indium complex byproduct gen-
erated from the indium-mediated allylation reaction for concurrent catalysis in subsequent steps.
Centrolobine and civet cat secretion are synthesized via this new method in overall yields of 58% and
23%, respectively.

� 2009 Published by Elsevier Ltd.
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The growth of organic synthesis, especially of useful com-
pounds, has been facilitated by the many methodologies developed
over decades. Among these, one-pot methods are attractive since
they generate less waste, minimize isolation of intermediates in
multi-step syntheses of complex molecular targets and save time
and cost.1 One-pot reactions can be classified roughly as tandem,2a

domino2b or cascade2c reactions. For the successful implementa-
tion of one-pot strategies in natural product synthesis, it is impor-
tant to maximize the overlap or compatibility factors (such as
reagent, catalyst, solvent, and mechanism) of the sequential reac-
tions. There are only a few reports on one-pot total syntheses of
natural products from commercially available starting materials,
and these still pose a challenge for synthetic chemists.

The cis-2,6-disubstituted-tetrahydropyran (THP) ring features
in a large variety of biologically active natural products such as
centrolobine and civet cat secretion. Our group, and others, have
independently reported the InX3-catalyzed Prins cyclization of
homoallylic alcohols with aldehydes to produce cis-2,6-disubsti-
tuted-4-halo-THP products.3 Subsequent dehalogenation using
Bu3SnH3a,c,4 afforded the THP compounds. Herein, we report the
one-pot syntheses of two natural products with a THP ring as the
backbone, namely, centrolobine and civet cat secretion, in overall
yields of 58% and 23%, respectively. One special feature of this
one-pot synthesis is the recyclability of the indium complex
byproduct generated from the indium-mediated allylation reac-
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tion, for use as the catalyst in subsequent steps. We envisaged that
the indium complex byproduct5 produced from the indium-medi-
ated allylation of aldehydes with allyl bromide would also catalyze
the subsequent Prins cyclization and dehalogenation (NaBH4/
InX3)6 (Scheme 1).

To develop a one-pot, three-step synthesis of THP-containing
compounds, we needed to screen for the best solvent for each indi-
vidual step. Our experience with the indium-mediated allylation
reaction revealed that water is an excellent solvent for this step.5a,b

As water is detrimental for subsequent steps, it is important that
the indium-mediated allylation reaction is carried out either under
solvent-free conditions or in a minimum amount of water. A de-
R1
O

OR1 R2

Scheme 1. Proposed hypothesis for constructing a THP ring.



Table 1
The one-pot, three-step syntheses of tetrahydropyransa

Ph

O

OR Ph

2

H

1

Br

In , H2O TMSBr , DCM InBr3 , THF

NaBH4RCHO

Entry R Product Overall yieldb (%)

1 –Ph 2a
OPh Ph

59

2 –CH(CH2CH3)2 OPh 2b 57

3 –CH2CH2Ph
OPh Ph

2c 55

4 –Cy 2dOPh 55

5
OPh

2e 54

6 OMe OPh

OMe

2f 51

7 Me OPh

Me
2g 60

8 Cl OPh

Cl
2h

60

a Addition method: 1st step: Indium powder (1.5 mmol), allyl bromide (1.2 mmol), 1 (1 mmol) and water (6 mmol); 2nd step: TMSBr (1.1 mmol), aldehyde (0.95 mmol)
and CH2Cl2 (2 mL); 3rd step: InBr3 (1.5 mmol), NaBH4 (2 mmol) and THF (2 mL).

b Yields based on aldehydes.
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tailed solvent screen showed that dichloromethane was the best
solvent for the Prins cyclization. On the other hand, THF was found
to be the best solvent for the dehalogenation process.

It is important to note that the NaBH4/InX3 system (generated in
advance or in situ)7 reduces the 4-iodo and 4-bromo THP com-
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Scheme 2. Total synthesis of (±)-cent
pounds efficiently but not the corresponding 4-chloro THP ana-
logue. It was found that 1.5 equiv of InX3 was essential for the
reduction in the third step. Therefore, hydrocinnamaldehyde 1
was subjected to indium-mediated allylation followed by treat-
ment with various aldehydes in a one-pot, three-step process
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rolobine via the one-pot method.
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Scheme 3. Total synthesis of (±)-civet cat secretion via the one-pot method.
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(Table 1).8 The one-pot method worked with a wide variety of
aldehydes, including alkyl and aromatic aldehydes, to form THP
products 2 in moderate yields. The substituents on the aromatic
aldehydes did not influence the overall yields (entries 1–8).

With the reaction conditions established, we applied this meth-
od to the one-pot total synthesis of centrolobine, an antibiotic nat-
ural product.9 The synthesis commenced with allylation of
aldehyde 310 to give the homoallylic alcohol 4, followed by Prins
cyclization and debromination to produce centrolobine 6 in 58%
overall yield (Scheme 2).

This one-pot, multiple-step method was also applied to the to-
tal synthesis of (6-methyl-2-tetrahydropyranyl) acetic acid 12,
which is a natural product isolated from glandular secretions of
the civet cat (Veverra civetta),11 as outlined in Scheme 3.

Commercially available acetal 7 was converted into aldehyde 8
by hydrolysis with Amberlyst-15. Subsequent allylation of 8 affor-
ded homoallylic alcohol 9, which was followed by Prins cyclization
and debromination to produce methyl ester 11. The natural prod-
uct 12 was obtained by hydrolysis of the ester with lithium
hydroxide. This one-pot, five-step method afforded 12 in 23% over-
all yield.

In conclusion, a one-pot strategy has been successfully designed
and applied to the total synthesis of two natural products, (±)-cen-
trolobine and (±)-civet cat secretion. This one-pot process provides
a practical entry to diverse THP-based natural products and ana-
logues. A special feature of this method is the recyclability of the
metal complex byproduct generated from the initial step for catal-
ysis of subsequent steps. Another feature is that no protection/
deprotection of the hydroxy group is necessary. Extension to so-
lid-supported synthesis and the application of this one-pot method
to the total synthesis of more complex molecules are in progress.
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